# This file is part of the Open Data Cube, see https://opendatacube.org for more information
#
# Copyright (c) 2015-2020 ODC Contributors
# SPDX-License-Identifier: Apache-2.0
import importlib
import itertools
import math
from collections import OrderedDict, namedtuple
from enum import Enum
from textwrap import dedent
from typing import Dict, Iterable, List, Literal, Optional, Tuple, Union
import numpy
from affine import Affine
from .crs import CRS, CRSMismatchError, MaybeCRS, SomeCRS, norm_crs
from .geom import (
BoundingBox,
Geometry,
bbox_intersection,
bbox_union,
line,
multigeom,
multiline,
point,
polygon_from_transform,
)
from .math import clamp, is_affine_st, is_almost_int, resolution_from_affine, snap_grid
from .roi import Tiles as RoiTiles
from .roi import align_up, polygon_path, roi_normalise, roi_shape
from .types import (
XY,
Index2d,
MaybeInt,
NormalizedROI,
Resolution,
Shape2d,
SomeIndex2d,
SomeResolution,
SomeShape,
iyx_,
res_,
shape_,
xy_,
)
OutlineMode = Union[
Literal["native"], Literal["pixel"], Literal["geo"], Literal["auto"]
]
class AnchorEnum(Enum):
"""
Defines which way to snap geobox pixel grid.
"""
EDGE = 0
CENTER = 1
FLOATING = 2
GeoboxAnchor = Union[AnchorEnum, XY[float]]
# pylint: disable=invalid-name,too-many-public-methods,too-many-lines
Coordinate = namedtuple("Coordinate", ("values", "units", "resolution"))
[docs]class GeoBox:
"""
Defines the location and resolution of a rectangular grid of data,
including it's :py:class:`~odc.geo.crs.CRS`.
:param shape: Shape in pixels ``(ny, nx)``
:param crs: Coordinate Reference System
:param affine: Affine transformation defining the location of the geobox
"""
__slots__ = ("_shape", "_affine", "_crs", "_extent")
[docs] def __init__(self, shape: SomeShape, affine: Affine, crs: MaybeCRS):
shape = shape_(shape)
self._shape = shape
self._affine = affine
self._crs = norm_crs(crs)
self._extent: Optional[Geometry] = None
[docs] @staticmethod
def from_bbox(
bbox: Union[BoundingBox, Tuple[float, float, float, float]],
crs: MaybeCRS = None,
*,
tight: bool = False,
shape: Union[SomeShape, int, None] = None,
resolution: Optional[SomeResolution] = None,
anchor: GeoboxAnchor = AnchorEnum.EDGE,
tol: float = 0.01,
) -> "GeoBox":
"""
Construct :py:class:`~odc.geo.geobox.GeoBox` from a bounding box.
:param bbox: Bounding box in CRS units, lonlat is assumed when ``crs`` is not supplied
:param crs: CRS of the bounding box (defaults to EPSG:4326)
:param shape:
Span that many pixels, if it's a single number then span that many pixels along the
longest dimension, other dimension will be computed to maintain roughly square pixels.
:param resolution: Use specified resolution
:param tight: Supplying ``tight=True`` turns off pixel snapping.
:param anchor:
By default snaps grid such that pixel edges fall on X/Y axis. Ignored when tight mode is
used.
:param tol:
Fraction of a pixel that can be ignored, defaults to 1/100. Bounding box of the output
geobox is allowed to be smaller than supplied bounding box by that amount.
:return:
:py:class:`~odc.geo.geobox.GeoBox` that covers supplied bounding box.
"""
# pylint: disable=too-many-locals, too-many-branches
_snap: Optional[XY[float]] = None
if tight:
anchor = AnchorEnum.FLOATING
if isinstance(anchor, XY):
_snap = anchor
if anchor == AnchorEnum.EDGE:
_snap = xy_(0, 0)
elif anchor == AnchorEnum.CENTER:
_snap = xy_(0.5, 0.5)
if not isinstance(bbox, BoundingBox):
bbox = BoundingBox(*bbox, crs=(crs or "epsg:4326"))
elif bbox.crs is None:
bbox = BoundingBox(*bbox.bbox, crs=(crs or "epsg:4326"))
if isinstance(shape, (int, float)):
if bbox.aspect > 1:
resolution = bbox.span_x / shape
else:
resolution = bbox.span_y / shape
shape = None
if resolution is not None:
rx, ry = res_(resolution).xy
if _snap is None:
offx, nx = snap_grid(bbox.left, bbox.right, rx, None, tol=tol)
offy, ny = snap_grid(bbox.bottom, bbox.top, ry, None, tol=tol)
else:
offx, nx = snap_grid(bbox.left, bbox.right, rx, _snap.x, tol=tol)
offy, ny = snap_grid(bbox.bottom, bbox.top, ry, _snap.y, tol=tol)
affine = Affine.translation(offx, offy) * Affine.scale(rx, ry)
return GeoBox((ny, nx), crs=bbox.crs, affine=affine)
if shape is None:
raise ValueError("Must supply shape or resolution")
shape = shape_(shape)
nx, ny = shape.wh
rx = bbox.span_x / nx
ry = -bbox.span_y / ny
if _snap is None:
offx, offy = bbox.left, bbox.top
else:
offx, _ = snap_grid(bbox.left, bbox.right, rx, _snap.x, tol=tol)
offy, _ = snap_grid(bbox.bottom, bbox.top, ry, _snap.y, tol=tol)
affine = Affine.translation(offx, offy) * Affine.scale(rx, ry)
return GeoBox((ny, nx), crs=bbox.crs, affine=affine)
[docs] @staticmethod
def from_geopolygon(
geopolygon: Geometry,
resolution: Optional[SomeResolution] = None,
crs: MaybeCRS = None,
align: Optional[XY[float]] = None,
*,
shape: Union[SomeShape, int, None] = None,
tight: bool = False,
anchor: GeoboxAnchor = AnchorEnum.EDGE,
tol: float = 0.01,
) -> "GeoBox":
"""
Construct :py:class:`~odc.geo.geobox.GeoBox` from a polygon.
:param resolution:
Either a single number or a :py:class:`~odc.geo.types.Resolution` object.
:param shape:
Span that many pixels, if it's a single number then span that many pixels along the
longest dimension, other dimension will be computed to maintain roughly square pixels.
:param crs:
CRS to use, if different from the geopolygon
:param align:
Deprecated: please switch to ``anchor=``
:param anchor:
By default snaps grid such that pixel edges fall on X/Y axis.
:param tol:
Fraction of a pixel that can be ignored, defaults to 1/100. Bounding box of the output
geobox is allowed to be smaller than supplied bounding box by that amount.
:param tight: Supplying ``tight=True`` turns off pixel snapping.
"""
if align is not None:
# support old-style "align", which is basically anchor but in CRS units
ax, ay = align.xy
if ax == 0 and ay == 0:
anchor = AnchorEnum.EDGE
else:
assert resolution is not None
resolution = res_(resolution)
anchor = xy_(ax / abs(resolution.x), ay / abs(resolution.y))
if crs is None:
crs = geopolygon.crs
else:
geopolygon = geopolygon.to_crs(crs)
return GeoBox.from_bbox(
geopolygon.boundingbox,
crs,
shape=shape,
resolution=resolution,
anchor=anchor,
tol=tol,
tight=tight,
)
[docs] def buffered(self, xbuff: float, ybuff: Optional[float] = None) -> "GeoBox":
"""
Produce a tile buffered by ``xbuff, ybuff`` (in CRS units).
"""
if ybuff is None:
ybuff = xbuff
by, bx = (
_round_to_res(buf, res)
for buf, res in zip((ybuff, xbuff), self.resolution.yx)
)
affine = self._affine * Affine.translation(-bx, -by)
ny, nx = (sz + 2 * b for sz, b in zip(self._shape, (by, bx)))
return GeoBox(
(ny, nx),
affine=affine,
crs=self._crs,
)
def __getitem__(self, roi) -> "GeoBox":
if isinstance(roi, int):
roi = (slice(roi, roi + 1), slice(None, None))
if isinstance(roi, slice):
roi = (roi, slice(None, None))
if len(roi) > 2:
raise ValueError("Expect 2d slice")
roi = roi_normalise(roi, self._shape.shape)
if not all(s.step is None or s.step == 1 for s in roi):
raise NotImplementedError("scaling not implemented, yet")
ty, tx = (s.start for s in roi)
ny, nx = roi_shape(roi)
affine = self._affine * Affine.translation(tx, ty)
return GeoBox(shape=(ny, nx), affine=affine, crs=self._crs)
def __or__(self, other) -> "GeoBox":
"""A geobox that encompasses both self and other."""
return geobox_union_conservative([self, other])
def __and__(self, other) -> "GeoBox":
"""A geobox that is contained in both self and other."""
return geobox_intersection_conservative([self, other])
[docs] def is_empty(self) -> bool:
"""Check if geobox is "empty"."""
return 0 in self._shape
def __bool__(self) -> bool:
return not self.is_empty()
def __hash__(self):
return hash((*self._shape, self._crs, self._affine))
[docs] def overlap_roi(self, other: "GeoBox", tol: float = 1e-8) -> NormalizedROI:
"""
Compute overlap as ROI.
Figure out slice into this geobox that shares pixels with the ``other`` geobox with
consistent pixel grid.
:raises:
:py:class:`ValueError` when two geoboxes are not pixel-aligned.
"""
nx, ny = self._shape.xy
x0, y0, x1, y1 = map(int, bounding_box_in_pixel_domain(other, self, tol))
x0, y0 = max(0, x0), max(0, y0)
x1, y1 = min(x1, nx), min(y1, ny)
return numpy.s_[y0:y1, x0:x1]
@property
def transform(self) -> Affine:
"""Linear mapping from pixel space to CRS."""
return self._affine
@property
def affine(self) -> Affine:
"""
Linear mapping from pixel space to CRS.
alias for :py:attr:`~odc.geo.geobox.GeoBox.transform`
"""
return self._affine
@property
def width(self) -> int:
"""Width in pixels (nx)."""
return self._shape.x
@property
def height(self) -> int:
"""Height in pixels (ny)."""
return self._shape.y
@property
def shape(self) -> Shape2d:
"""Shape in pixels ``(height, width)``."""
return self._shape
@property
def aspect(self) -> float:
"""Aspect ratio (X/Y in pixel space)."""
return self._shape.aspect
@property
def crs(self) -> Optional[CRS]:
"""Coordinate Reference System of the GeoBox."""
return self._crs
@property
def dimensions(self) -> Tuple[str, str]:
"""List of dimension names of the GeoBox."""
crs = self._crs
if crs is None:
return ("y", "x")
return crs.dimensions
@property
def resolution(self) -> Resolution:
"""Resolution, pixel size in CRS units."""
return resolution_from_affine(self._affine)
@property
def alignment(self) -> XY[float]:
"""
Alignment of pixel boundaries in CRS units.
This is usally ``(0,0)``.
"""
rx, _, tx, _, ry, ty, *_ = self._affine
return xy_(tx % abs(rx), ty % abs(ry))
@property
def coordinates(self) -> Dict[str, Coordinate]:
"""
Query coordinates.
This method only works with axis-aligned boxes. It will raise :py:class:`ValueError` if called
on non-axis aligned :py:class:`~odc.geo.geobox.GeoBox`.
:raises: :py:class:`ValueError` if not axis aligned.
:return:
Mapping from coordinate name to :py:class:`~odc.geo.geobox.Coordinate`.
"""
self._confirm_axis_aligned("Only axis aligned GeoBox can do this.")
rx, _, tx, _, ry, ty, *_ = self._affine
ny, nx = self._shape
xs = numpy.arange(nx) * rx + (tx + rx / 2)
ys = numpy.arange(ny) * ry + (ty + ry / 2)
crs_units = self._crs.units if self._crs is not None else ("1", "1")
return OrderedDict(
(dim, Coordinate(labels, units, res))
for dim, labels, units, res in zip(
self.dimensions, (ys, xs), crs_units, (ry, rx)
)
)
@property
def extent(self) -> Geometry:
"""GeoBox footprint in native CRS."""
if self._extent is not None:
return self._extent
_extent = polygon_from_transform(self._shape, self._affine, crs=self._crs)
self._extent = _extent
return _extent
@property
def boundingbox(self) -> BoundingBox:
"""GeoBox bounding box in the native CRS."""
return BoundingBox.from_transform(self._shape, self._affine, crs=self._crs)
[docs] def map_bounds(
self, *args, **kw
) -> Tuple[Tuple[float, float], Tuple[float, float]]:
"""
Query bounds in folium/ipyleaflet style.
Returns SW, and NE corners in lat/lon order.
``((lat_w, lon_s), (lat_e, lon_n))``.
"""
return self.boundingbox.map_bounds(*args, **kw)
def _reproject_resolution(self, npoints: int = 100):
bbox = self.extent.boundingbox
span = max(bbox.span_x, bbox.span_y)
return span / npoints
[docs] def to_crs(
self,
crs: SomeCRS,
*,
resolution: Literal["auto", "fit", "same"] = "auto",
tight: bool = False,
) -> "GeoBox":
"""
Compute GeoBox covering the same region in a different projection.
:param crs:
Desired CRS of the output
:param resolution:
* "same" use exactly the same resolution as src
* "fit" use center pixel to determine scale change between the two
* | "auto" is to use the same resolution on the output if CRS units are the same
| between the source and destination and otherwise use "fit"
:param tight:
By default output pixel grid is adjusted to align pixel edges to X/Y axis, suppling
``tight=True`` produces unaligned geobox on the output.
:return:
Similar resolution, axis aligned geobox that fully encloses this one but in a different
projection.
"""
# pylint: disable=import-outside-toplevel
# can't be up-top due to circular imports issues
from .overlap import compute_output_geobox
return compute_output_geobox(self, crs, resolution=resolution, tight=tight)
@property
def geographic_extent(self) -> Geometry:
"""GeoBox extent in EPSG:4326."""
if self._crs is None or self._crs.geographic:
return self.extent
return self.footprint("epsg:4326")
coords = coordinates
dims = dimensions
def __str__(self):
return self.__repr__()
def __repr__(self):
return f"GeoBox({self._shape.yx!r}, {self._affine!r}, {self._crs!r})"
def __eq__(self, other):
if not isinstance(other, GeoBox):
return False
return (
self._shape == other._shape
and self._affine == other._affine
and self._crs == other._crs
)
[docs] def __rmul__(self, transform: Affine) -> "GeoBox":
"""
Apply affine transform on CRS side.
This has effect of transforming footprint of the source via ``transform``.
:param transform:
Affine matrix that shifts footprint of the source geobox.
:return:
:py:class:`~odc.geo.gebox.GeoBox` of the same pixel shape but
covering different region.
"""
return GeoBox(self._shape, transform * self._affine, self._crs)
[docs] def __mul__(self, transform: Affine) -> "GeoBox":
"""
Apply affine transform on pixel side.
``X_old_pix = transform * X_new_pix``
:param transform:
Affine matrix mapping from new pixel coordinate space to pixel coordinate
space of input geobox.
:returns:
:py:class:`~odc.geo.gebox.GeoBox` of the same pixel shape but covering different
region. Pixel coordinates in the output relate to input coordinates via ``transform``.
"""
return GeoBox(self._shape, self._affine * transform, self._crs)
[docs] def pad(self, padx: int, pady: MaybeInt = None) -> "GeoBox":
"""
Pad geobox.
Expand GeoBox by fixed number of pixels on each side
"""
# false positive for -pady, it's never None by the time it runs
# pylint: disable=invalid-unary-operand-type
pady = padx if pady is None else pady
ny, nx = self._shape.yx
A = self._affine * Affine.translation(-padx, -pady)
shape = (ny + pady * 2, nx + padx * 2)
return GeoBox(shape, A, self._crs)
[docs] def pad_wh(self, alignx: int = 16, aligny: MaybeInt = None) -> "GeoBox":
"""
Possibly expand :py:class:`~odc.geo.geobox.GeoBox` by a few pixels.
Find nearest ``width``/``height`` that are multiples of the desired factor. And return a new
geobox that is slighly taller and/or wider covering roughly the same region. The new geobox
will have the same CRS and transform but possibly larger shape.
"""
aligny = alignx if aligny is None else aligny
ny, nx = (align_up(sz, n) for sz, n in zip(self._shape.yx, (aligny, alignx)))
return GeoBox((ny, nx), self._affine, self._crs)
[docs] def zoom_out(self, factor: float) -> "GeoBox":
"""
Compute :py:class:`~odc.geo.geobox.GeoBox` with changed resolution.
- ``factor > 1`` implies smaller width/height, fewer but bigger pixels
- ``factor < 1`` implies bigger width/height, more but smaller pixels
:returns:
GeoBox covering the same region but with different pixels (i.e. lower or higher resolution)
"""
ny, nx = (max(1, math.ceil(s / factor)) for s in self.shape)
A = self._affine * Affine.scale(factor, factor)
return GeoBox((ny, nx), A, self._crs)
[docs] def zoom_to(self, shape: Union[SomeShape, int, float]) -> "GeoBox":
"""
Change GeoBox shape.
When supplied a single integer scale longest dimension to match that.
:returns:
GeoBox covering the same region but with different number of pixels and therefore resolution.
"""
if isinstance(shape, (int, float)):
nmax = max(*self._shape)
return self.zoom_out(nmax / shape)
shape = shape_(shape)
sy, sx = (N / float(n) for N, n in zip(self._shape, shape.shape))
A = self._affine * Affine.scale(sx, sy)
return GeoBox(shape, A, self._crs)
[docs] def flipy(self) -> "GeoBox":
"""
Flip along Y axis.
:returns: GeoBox covering the same region but with Y-axis flipped
"""
ny, _ = self._shape
A = Affine.translation(0, ny) * Affine.scale(1, -1)
return self * A
[docs] def flipx(self) -> "GeoBox":
"""
Flip along X axis.
:returns: GeoBox covering the same region but with X-axis flipped
"""
_, nx = self._shape
A = Affine.translation(nx, 0) * Affine.scale(-1, 1)
return self * A
[docs] def translate_pix(self, tx: float, ty: float) -> "GeoBox":
"""
Shift GeoBox in pixel plane.
``(0,0)`` of the new GeoBox will be at the same location as pixel ``(tx, ty)`` in the original
GeoBox.
"""
return self * Affine.translation(tx, ty)
@property
def left(self) -> "GeoBox":
"""Same size geobox to the left of this one."""
return self.translate_pix(-self.shape.x, 0)
@property
def right(self) -> "GeoBox":
"""Same size geobox to the right of this one."""
return self.translate_pix(self.shape.x, 0)
@property
def top(self) -> "GeoBox":
"""Same size geobox directly above this one."""
return self.translate_pix(0, -self.shape.y)
@property
def bottom(self) -> "GeoBox":
"""Same size geobox directly below this one."""
return self.translate_pix(0, self.shape.y)
[docs] def rotate(self, deg: float) -> "GeoBox":
"""
Rotate GeoBox around the center.
It's as if you stick a needle through the center of the GeoBox footprint
and rotate it counter clock wise by supplied number of degrees.
Note that from the pixel point of view image rotates the other way. If you have
source image with an arrow pointing right, and you rotate GeoBox 90 degrees,
in that view arrow should point down (this is assuming usual case of inverted
y-axis)
"""
ny, nx = self._shape
c0 = self._affine * (nx * 0.5, ny * 0.5)
return Affine.rotation(deg, c0) * self
[docs] def boundary(self, pts_per_side: int = 16) -> numpy.ndarray:
"""
Boundary of a :py:class:`~odc.geo.geobox.GeoBox`.
Construct a ring of points in pixel space along the edge of the geobox.
:param pts_per_side: Number of points per side, default is 16.
:return:
Points in pixel space along the perimeter of a GeoBox as a ``Nx2`` array
in pixel coordinates.
"""
ny, nx = self._shape.yx
xx = numpy.linspace(0, nx, pts_per_side, dtype="float32")
yy = numpy.linspace(0, ny, pts_per_side, dtype="float32")
return polygon_path(xx, yy).T[:-1]
def _confirm_axis_aligned(self, raise_error: Optional[str] = None) -> bool:
if is_affine_st(self._affine):
return True
if raise_error is not None:
raise ValueError(raise_error)
return False
@property
def axis_aligned(self):
"""
Check if Geobox is axis-aligned (not rotated).
"""
return self._confirm_axis_aligned()
@property
def center_pixel(self) -> "GeoBox":
"""
GeoBox of a center pixel.
"""
return self[self.shape.map(lambda x: x // 2).yx]
@property
def compat(self):
"""
Convert to :py:class:`datacube.utils.geometry.GeoBox`
"""
try:
geom = importlib.import_module("datacube.utils.geometry")
except ModuleNotFoundError:
return None
w, h = self.shape.wh
return geom.GeoBox(w, h, self._affine, str(self._crs))
def __dask_tokenize__(self):
return (
"odc.geo.geobox.GeoBox",
str(self.crs),
*self._shape.yx,
*self._affine[:6],
)
def svg(
self,
scale_factor: float = 1.0,
mode: OutlineMode = "auto",
notch: float = 0.0,
grid_stroke: str = "pink",
) -> str:
"""
Produce SVG paths.
:param mode: One of pixel, native, geo (default is geo)
:return: SVG path
"""
if mode == "auto":
mode = "native" if self._crs is None else "geo"
grids = self.grid_lines(mode=mode)
outline = self.outline(mode, notch=notch)
grid_svg = (
'<path fill="none" opacity="0.8"'
f' stroke-width="{0.8*scale_factor}"'
f' stroke="{grid_stroke}"'
f' d="{grids.svg_path()}" />'
)
return outline.svg(scale_factor) + grid_svg
def grid_lines(self, step: int = 0, mode: OutlineMode = "native") -> Geometry:
"""
Construct pixel edge aligned grid lines.
"""
from .ui import pick_grid_step # pylint: disable=import-outside-toplevel
nx, ny = self._shape.xy
if nx > 0 and ny > 0:
if step == 0:
step = pick_grid_step(max(nx, ny))
xx = [*range(0, nx, step), nx]
yy = [*range(0, ny, step), ny]
vertical = [list(itertools.product([x], yy)) for x in xx[1:-1]]
horizontal = [list(itertools.product(xx, [y])) for y in yy[1:-1]]
lines = multiline(vertical + horizontal, self._crs)
else:
lines = multiline([], self._crs)
if mode == "pixel":
return lines
lines = lines.transform(self._affine)
if mode == "native":
return lines
dx, dy = self._affine * (step, 0)
res = math.sqrt(dx * dx + dy * dy) / 5
return lines.to_crs("epsg:4326", resolution=res)
def outline(self, mode: OutlineMode = "native", notch: float = 0.1) -> Geometry:
"""
Produce Line Geometry around perimeter.
.. code-block:: txt
+---+-------------+
| | |
+---+ |
| |
| |
+-----------------+
"""
assert notch < 1
w, h = self._shape.wh
if notch > 0:
nn = min(notch * max(w, h), w, h)
pix = line(
[
(0, nn),
(0, 0),
(nn, 0),
(w, 0),
(w, h),
(0, h),
(0, nn),
(nn, nn),
(nn, 0),
],
self._crs,
)
else:
pix = multigeom(
[
line([(0, 0), (w, 0), (w, h), (0, h), (0, 0)], self._crs),
point(0, 0, self._crs),
]
)
if mode == "pixel":
return pix
native = pix.transform(self._affine)
if mode == "native":
return native
# about 100 pts per side
bbox = native.boundingbox
res = max(bbox.span_x, bbox.span_y) / 100
return native.to_crs("EPSG:4326", resolution=res)
def _display_bbox(self, pad_fraction: float = 0.1):
bbox = self.geographic_extent.boundingbox
pad_deg = max(bbox.span_x, bbox.span_y) * pad_fraction
return bbox.buffered(pad_deg)
def _render_svg(self, sz=360):
# pylint: disable=import-outside-toplevel
from .ui import make_svg, svg_base_map
if self._crs is None:
bbox = self.extent.boundingbox
margin = 0.1 * max(bbox.span_x, bbox.span_y)
bbox = bbox.buffered(margin)
return make_svg(
self,
bbox=bbox,
sz=sz,
)
return svg_base_map(self, bbox=self._display_bbox(), sz=sz)
def _repr_svg_(self):
return self._render_svg()
def _repr_html_(self):
# pylint: disable=import-outside-toplevel,too-many-locals
from .data import gbox_css
from .ui import norm_units, pick_grid_step, svg_base_map
W, H = self._shape.wh
grid_step = pick_grid_step(max(W, H))
svg_zoomed_txt = self._render_svg(sz=320)
crs = self._crs
if crs is None:
authority = ("", "")
wkt = "not set"
units = ""
svg_global_txt = ""
else:
authority = crs.authority
wkt = crs.to_wkt(pretty=True).replace("\n", "<br/>").replace(" ", " ")
units = crs.units[0]
svg_global_txt = svg_base_map(
sz=200, target=self.geographic_extent.centroid.coords[0]
)
if authority == ("", ""):
authority = ("CRS", "WKT")
units = norm_units(units)
pix_sz = max(*self.resolution.map(abs).xy)
info = [
("Dimensions", f"{W:,d}x{H:,d}"),
authority,
("Resolution", f"{pix_sz:g}{units}"),
("Cell", f"{grid_step:,d}px"),
]
info_html = "\n".join(
[
(
f'<div class="row"><div class="column">{hdr}</div>'
f'<div class="column value">{val}</div></div>'
)
for hdr, val in info
]
)
return dedent(
f"""\
<style>{gbox_css()}</style>
<div class="gbox-info">
<h4>GeoBox</h4>
<div class="row">
<div class="column">
<div class="info-box">
{info_html}
<div>{svg_global_txt}</div>
</div>
</div>
<div class="column svg-zoomed">{svg_zoomed_txt}</div>
</div>
<details>
<summary>WKT</summary>
<div class="wkt">{wkt}</div>
</details>
</div>"""
)
[docs]def gbox_boundary(gbox: GeoBox, pts_per_side: int = 16) -> numpy.ndarray:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.boundary`."""
return gbox.boundary(pts_per_side)
[docs]def bounding_box_in_pixel_domain(
geobox: GeoBox, reference: GeoBox, tol: float = 1e-8
) -> BoundingBox:
"""
Bounding box of ``geobox`` in pixel space of ``reference``.
:return:
The bounding box of ``geobox`` with respect to the pixel grid defined by ``reference`` when
their coordinate grids are compatible. Two geoboxes are compatible when they have the same
CRS, same pixel size and orientation, and are related by whole pixel translation.
:raises:
:py:class:`ValueError` when two geoboxes are not pixel-aligned.
"""
if reference.crs != geobox.crs:
raise ValueError("Cannot combine geoboxes in different CRSs")
# compute pixel-to-pixel transform
# expect it to be a pure, pixel aligned translation
# 1 0 tx
# 0 1 ty
# 0 0 1
# Such that tx,ty are almost integer.
sx, z1, tx, z2, sy, ty, *_ = ~reference.affine * geobox.affine
if not (
numpy.isclose(sx, 1)
and numpy.isclose(z1, 0)
and is_almost_int(tx, tol)
and numpy.isclose(z2, 0)
and numpy.isclose(sy, 1)
and is_almost_int(ty, tol)
):
raise ValueError("Incompatible grids")
tx, ty = round(tx), round(ty)
ny, nx = geobox.shape
return BoundingBox(tx, ty, tx + nx, ty + ny, None)
[docs]def geobox_union_conservative(geoboxes: List[GeoBox]) -> GeoBox:
"""
Union of geoboxes as a geobox.
Fails whenever incompatible grids are encountered.
"""
if len(geoboxes) == 0:
raise ValueError("No geoboxes supplied")
reference, *_ = geoboxes
bbox = bbox_union(
bounding_box_in_pixel_domain(geobox, reference=reference) for geobox in geoboxes
)
affine = reference.affine * Affine.translation(*bbox[:2])
return GeoBox(shape=bbox.shape, affine=affine, crs=reference.crs)
[docs]def geobox_intersection_conservative(geoboxes: List[GeoBox]) -> GeoBox:
"""
Intersection of geoboxes.
Fails whenever incompatible grids are encountered.
"""
if len(geoboxes) == 0:
raise ValueError("No geoboxes supplied")
reference, *_ = geoboxes
bbox = bbox_intersection(
bounding_box_in_pixel_domain(geobox, reference=reference) for geobox in geoboxes
)
# standardise empty geobox representation
if bbox.left > bbox.right:
bbox = BoundingBox(
left=bbox.left,
bottom=bbox.bottom,
right=bbox.left,
top=bbox.top,
crs=bbox.crs,
)
if bbox.bottom > bbox.top:
bbox = BoundingBox(
left=bbox.left,
bottom=bbox.bottom,
right=bbox.right,
top=bbox.bottom,
crs=bbox.crs,
)
affine = reference.affine * Affine.translation(*bbox[:2])
return GeoBox(shape=bbox.shape, affine=affine, crs=reference.crs)
[docs]def scaled_down_geobox(src_geobox: GeoBox, scaler: int) -> GeoBox:
"""
Compute :py:class:`~odc.geo.geobox.GeoBox` of a zoomed image.
Given a source geobox and an integer scaler compute geobox of a scaled down image.
Output geobox will be padded when shape is not a multiple of scaler.
Example: ``5x4, scaler=2 -> 3x2``
.. note::
We assume that pixel coordinates are ``0,0`` at the top-left corner of a top-left pixel.
"""
assert scaler > 1
ny, nx = (X // scaler + (1 if X % scaler else 0) for X in src_geobox.shape)
# Since 0,0 is at the corner of a pixel, not center, there is no
# translation between pixel plane coords due to scaling
A = src_geobox.transform * Affine.scale(scaler, scaler)
return GeoBox((ny, nx), A, src_geobox.crs)
def _round_to_res(value: float, res: float) -> int:
res = abs(res)
return int(math.ceil((value - 0.1 * res) / res))
[docs]def flipy(gbox: GeoBox) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.flipy`."""
return gbox.flipy()
[docs]def flipx(gbox: GeoBox) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.flipx`."""
return gbox.flipx()
[docs]def translate_pix(gbox: GeoBox, tx: float, ty: float) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.translate_pix`."""
return gbox.translate_pix(tx, ty)
[docs]def pad(gbox: GeoBox, padx: int, pady: MaybeInt = None) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.pad`."""
return gbox.pad(padx, pady)
[docs]def pad_wh(gbox: GeoBox, alignx: int = 16, aligny: MaybeInt = None) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.pad_wh`."""
return gbox.pad_wh(alignx, aligny)
[docs]def zoom_out(gbox: GeoBox, factor: float) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.zoom_out`."""
return gbox.zoom_out(factor)
[docs]def zoom_to(gbox: GeoBox, shape: SomeShape) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.zoom_to`."""
return gbox.zoom_to(shape)
[docs]def rotate(gbox: GeoBox, deg: float) -> GeoBox:
"""Alias for :py:meth:`odc.geo.geobox.GeoBox.`."""
return gbox.rotate(deg)
[docs]class GeoboxTiles:
"""Partition GeoBox into sub geoboxes."""
[docs] def __init__(self, box: GeoBox, tile_shape: SomeShape):
"""
Construct from a :py:class:`~odc.geo.GeoBox`.
:param box: source :py:class:`~odc.geo.GeoBox`
:param tile_shape: Shape of sub-tiles in pixels ``(rows, cols)``
"""
self._gbox = box
self._tiles = RoiTiles(box.shape, tile_shape)
self._cache: Dict[Index2d, GeoBox] = {}
@property
def base(self) -> GeoBox:
"""Access base Geobox"""
return self._gbox
@property
def shape(self) -> Shape2d:
"""Number of tiles along each dimension."""
return self._tiles.shape
@property
def roi(self) -> RoiTiles:
"""
Access ROI covered by tile.
.. code-block:: python
gbt = GeoboxTiles(..)
roi = gbt.roi[0, 3]
"""
return self._tiles
[docs] def chunk_shape(self, idx: SomeIndex2d) -> Shape2d:
"""
Query chunk shape for a given chunk.
:param idx: ``(row, col)`` chunk index
:returns: ``(nrows, ncols)`` shape of a tile (edge tiles might be smaller)
:raises: :py:class:`IndexError` when index is outside of ``[(0,0) -> .shape)``.
"""
return self._tiles.tile_shape(idx)
def __getitem__(self, idx: SomeIndex2d) -> GeoBox:
"""
Lookup tile by index, index is in matrix access order: ``(row, col)``.
:param idx: ``(row, col)`` index
:returns: GeoBox of a tile
:raises: IndexError when index is outside of ``[(0,0) -> .shape)``
"""
idx = iyx_(idx)
sub_gbox = self._cache.get(idx, None)
if sub_gbox is not None:
return sub_gbox
roi = self._tiles[idx]
return self._cache.setdefault(idx, self._gbox[roi])
[docs] def range_from_bbox(self, bbox: BoundingBox) -> Tuple[range, range]:
"""
Intersect with a bounding box.
Compute rows and columns overlapping with a given :py:class:`~odc.geo.geom.BoundingBox`.
"""
def clamped_range(v1: float, v2: float, N: int) -> range:
_in = clamp(math.floor(v1), 0, N)
_out = clamp(math.ceil(v2), 0, N)
return range(_in, _out)
if bbox.crs != self._gbox.crs:
raise CRSMismatchError()
sy, sx = self._tiles.tile_shape((0, 0)).yx
A = Affine.scale(1.0 / sx, 1.0 / sy) * (~self._gbox.transform)
# A maps from X,Y in meters to chunk index
bbox = bbox.transform(A)
NY, NX = self._tiles.shape.yx
xx = clamped_range(bbox.left, bbox.right, NX)
yy = clamped_range(bbox.bottom, bbox.top, NY)
return (yy, xx)
[docs] def tiles(self, polygon: Geometry) -> Iterable[Tuple[int, int]]:
"""Return tile indexes overlapping with a given geometry."""
target_crs = self._gbox.crs
poly = polygon
if target_crs is not None and poly.crs != target_crs:
poly = poly.to_crs(target_crs)
yy, xx = self.range_from_bbox(poly.boundingbox)
for idx in itertools.product(yy, xx):
gbox = self[idx]
if gbox.extent.intersects(poly):
yield idx
def __dask_tokenize__(self):
return (
"odc.geo.geobox.GeoboxTiles",
*self._tiles.shape.yx,
*self._gbox.__dask_tokenize__()[1:],
)